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Pattern Recognition (PR): Motivation 
 
 

 Pattern recognition stems from the need for automated 
machine recognition of objects, signals or images, or the 
need for automated decision-making based on a given 

set of parameters. 
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PR Defined 
 

PR is a domain of machine learning. It is the act of taking in raw 
data and make an action based on it. 
  
 The assignment of a physical object or event to one of several pre-

specified categories” –Duda and Hart 
 

 A problem of estimating density functions in a high-dimensional space and 
dividing the space into the regions of categories or classes” – Fukunaga 
 

 The science that concerns the description or classification (recognition) of 
measurements” –Schalkoff 
 

 The process of giving names ω to observations x”, –Schürmann 
 

 PR is concerned with answering the question “What is this?” –Morse 
 

PR PLAYS THE ROLE WHEN A DECISION IS ABOUT TO TAKE 
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Machine 
Intelligence 

Knowledge-based 
Systems 

 Probabilistic reasoning 
 Approximate reasoning 
 Case based reasoning 

 Fuzzy logic 
 
Rough sets 

 Pattern recognition 
    and learning 

Hybrid Systems 

 Neuro-fuzzy 
 Genetic neural 
 Fuzzy genetic 
 Fuzzy Rough 
 Neuro Rough… 

Non-linear  
Dynamics 

 Chaos theory 
 Rescaled range  
   analysis (wavelet) 
 Fractal analysis 

Data Driven  
Systems 

 Neural network  
                  system 
 Evolutionary  
            computing 

Machine Intelligence:  A core concept for grouping various advanced 
technologies with Pattern Recognition and Learning 
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Measurement  →  Feature →  Decision  
  Space                   Space          Space 
 

Pattern Recognition System (PRS) 
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“A pattern is the opposite of a  chaos; it is an entity vaguely 
defined, that could be given a name.”  

     WHAT ABOUT TEXTURE   ? 

What is a pattern? 
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A pattern is an abstract object, or a set of measurements 
describing a physical object. 
 

What is a pattern? 
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Cristal Patterns: atómic or molecular 

Their structures are represented by 3D graphs and can be described by  
deterministic grammars  or formal languages 

Examples of Patterns 
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Patterns of Constellations 

Patterns of constellations are represented by 2D planar graphs 
 
Human perception has strong tendency to find patterns from anything.  We see 
 patterns  from even random noise --- we are more likely to believe a hidden  
pattern than denying it  when the risk (reward) for missing (discovering) a pattern  
is often high. 

Examples of Patterns 
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Biological Patterns --- 

Landmarks are identified from biologic forms and these patterns are then  
represented by a list of points.   But for other forms, like the root of plants, 
Points cannot be registered crossing instances. 
 
Applications:  Biometrics, computacional anatomy, brain mapping, … 

Examples of Patterns 
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Biological Patterns 

Landmarks are identified from biologic forms and these patterns are then  
represented by a list of points.    
 

Examples of Patterns 
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Music Patterns 

Ravel Symphony? 

Examples of Patterns 
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People Recognition 
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Funny, Funny 

Examples of Patterns 
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Discovery and Association of Patterns 

Statistics show connections between the shape of one’s face (adults)  
and his/her Character. There is also evidence that the outline of children’s  
face is related to alcohol abuse during pregnancy. 

Examples of Patterns 
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What are the features? 
Statistics show connections between the shape of one’s face (adults)  
and his/her Character.   

Discovery and Association of Patterns 

Examples of Patterns 
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We may understand patterns of brain activity and find relationships 
between brain activities, cognition, and behaviors 

Patterns of Brain Activity 

Examples of Patterns 
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Variation Patterns: 
    1. Expression – geometric deformation 
    2. illumination--- Photometric deformation 
    3. Transformation –2D pose 3D  
    4. Noise and Occlusion 

Examples of Patterns 
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A broad range of texture patterns are generated by stochastic processes. 
  

Examples of Patterns 
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. 
    How are these patterns represented in human mind? 

Examples of Patterns 
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Speech signals and Hidden Markov models 

Examples of Patterns 
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Natural  Language and stochastic grammar. 
. 

Examples of Patterns 
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Object Recognition 
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Examples of Patterns 
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Maps Recognition 
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Examples of Patterns 
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Finacial Series Pattern Recognition 

Examples of Patterns 
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Examples of Patterns 
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Pattern Recognition in Medical Diagnosis 

Examples of Patterns 
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Optical Character Recognition 

Examples of Patterns 
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Escher, who else?  

Examples of Patterns 
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Human Genome 
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Examples of Patterns 



31/134 

• Statistical PR: based on underlying statistical model of 
patterns and pattern classes. 

• Neural networks: classifier is represented as a network of 
cells modeling neurons of the human brain (connectionist 
approach). 

• Structural (or syntactic) PR: pattern classes represented 
by means of formal structures as grammars, automata, 
strings, etc.  
 

Approaches 
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• A pattern class (or category) is a set of patterns 
sharing common attributes. 
 

• A collection of “similar” (not necessarily identical) 
objects. 
 
 

• During recognition given objects are assigned to 
prescribed classes. 

 
 

What is a pattern class? 
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• Theory, Algorithms, Systems to put Patterns into 
Categories 
 

• Relate Perceived Pattern to Previously Perceived 
Patterns 
 

• Learn to distinguish patterns of interest from their 
background 
 

What is pattern recognition? 
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• Humans have developed highly sophisticated skills for 
sensing their environment and taking actions according 
to what they observe, e.g., 
– Recognizing a face. 
– Understanding spoken words. 
– Reading handwriting. 
– Distinguishing fresh food from its smell. 

 
• We would like to give similar capabilities to machines. 

 

Human Perception 
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• Handwritten: sorting letters by postal code. 
• Printed texts: reading machines for blind people, 

digitalization of  text documents. 

Optical Character 
Recognition 

(OCR) 

• Face recognition, verification, retrieval. 
• Finger prints recognition. 
• Speech recognition. 

Biometrics 

• Medical diagnosis: X-Ray, EKG 
(ElectroCardioGraph) analysis. 

Diagnostic 
systems 

• Automated Target Recognition (ATR). 
• Image segmentation and analysis (recognition 

from aerial or satelite photographs). 

Military 
applications 

Examples of applications 
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THE 
STATISTICAL 
APPROACH 
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Grid by Grid Comparison 

A A B 
Grid by Grid 
Comparison 

Examples of applications 
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Grid by Grid Comparison 

A A B 
38 

0  0  1  0 
0  0  1  0 
0  1  1  1 
1  0  0  1 
1  0  0  1 

0  1  1  0 
0  1  1  0 
0  1  1  0 
1  0  0  1 
1  0  0  1 

No of 
Mismatch= 3 

Examples of applications 
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Grid by Grid Comparison 

A A B 
Grid by Grid 
Comparison 

Examples of applications 
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Grid by Grid Comparison 

A A B 
0  0  1  0 
0  0  1  0 
0  1  1  1 
1  0  0  1 
1  0  0  1 

1  1  1  0 
0  1  0  1 
0  1  1  1 
0  1  0  1 
1  1  1  0 

No of 
Mismatch= 9 

Examples of applications 
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Problem with Grid by Grid Comparison 

• Time to recognize a pattern - Proportional to 
the number of stored patterns ( Too costly 
with the increase of number of patterns stored 
) 

Solution   
Artificial 

Intelligence 

A-Z a-z 0-9 

*/-+1@# 
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• We are often influenced by the knowledge of how patterns 
are modeled and recognized in nature when we develop 
pattern recognition algorithms. 
 

• Research on machine perception also helps us gain deeper 
understanding and appreciation for pattern recognition 
systems in nature. 
 

• Yet, we also apply many techniques that are purely numerical 
and do not have any correspondence in natural systems. 
 

Human and Machine Perception 
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• Two Phase : Learning and Detection. 
 

• Time to learn is higher. 
– Driving a car  

 
• Difficult to learn but once learnt it becomes natural. 

 
• Can use AI learning methodologies such as: 

– Neural Network. 
– Machine Learning. 

Pattern Recognition 
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• How can machine learn the rule from data? 
 
– Supervised learning: a teacher provides a category label or 

cost for each pattern in the training set. 
• Here samples from information classes (training data) are used for 

learning and then classifying unknown data points/patterns. 

 
– Unsupervised learning: the system forms clusters or natural 

groupings of the input patterns. 
 
 

– Semi-Supervised:  A small training samples from information 
classes are used for initial learning. The model is further built 
using unlabeled samples for classifying unknown patterns      
 
 
 

Learning 



Types of Prediction Problems (1/2) 
  
  Classification 

 The PR problem of assigning an object to a class 

 The output of the PR system is an integer label 
• e.g. classifying a product as “good” or “bad” in a quality control test 

 

  Regression 
 A generalization of a classification task 

 The output of the PR system is a real-valued number 
• e.g. predicting the share value of a firm based on past performance and 

     stock market indicators 

 



Types of Prediction Problems (2/2) 
  
  Clustering 

 The problem of organizing objects into meaningful groups 
 The system returns a (sometimes hierarchical) grouping of objects 

 e.g. organizing life forms into a taxonomy of species 
 

  Description 
 The problem of representing an object in terms of a series of 

primitives 
 The PR system produces a structural or linguistic description 

 e.g. labeling an ECG signal in terms of P, QRS and T complexes 
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• Classification (known categories)  
• Clustering (creation of new categories) 
 

Category “A” 

Category “B” 

Clustering 
(Unsupervised Classification) 

Classification 
(Supervised Classification) 

Classification vs. Clustering 
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y x=



















nx

x
x


2

1 Feature vector  
- A vector of observations (measurements).  
-     is a point in feature space     . 

Hidden state 
- Cannot be directly measured. 
- Patterns with equal hidden state belong to the same class. 

X∈x

x X

Y∈y

Task 
- To design a classifer (decision rule)  
which decides about a hidden state based on an onbservation. 

YX →:d

Pattern 

Basic concepts (Classification) 



50/134 

Dimension 

From left to right, the square, the 
cube, and the tesseract. The square 
is bounded by 1-dimensional lines, 
the cube by 2-dimensional areas, 
and the tesseract by 3-dimensional 
volumes. 

The dimension of a space or object is informally defined as the minimum number of coordinates needed to 
specify any point within it, e.g.,  
•    A line has a dimension of one because only one coordinate is needed to specify a point on it (for  
      example, the point at 5 on a number line).  
•     A surface such as a plane or the surface of a cylinder or sphere has a dimension of two because two   
      coordinates are needed to specify a point on it (for example, to locate a point on the surface of a sphere   
      you need both its latitude and its longitude).  
•     The inside of a cube, a cylinder or a sphere is three-dimensional because three coordinates are needed  
       to locate a point within these spaces. 

http://en.wikipedia.org/wiki/Square_%28geometry%29�
http://en.wikipedia.org/wiki/Cube�
http://en.wikipedia.org/wiki/Tesseract�
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Task: to extract features which are good for classification. 
Good features:  • Objects from the same class have similar feature values. 

• Objects from different classes have different values. 

“Good” features “Bad” features 

Feature extraction 
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Dimensionality 
Reduction 



53/134 Dimensionality Reduction 

• A limited yet salient feature set simplifies 
both pattern representation and classifier 
design. 
 

• Pattern representation is easy for 2D and 3D 
features. 

 
• How to make pattern with high dimensional 

features viewable? 
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Dimensionality Reduction How? 

• Feature Extraction 
– Create new features based on the original 

feature set 
– Transforms are usually involved 

• Feature Selection 
– Select the best subset from a given feature set.  



55/134 Main Issues in  
Dimensionality Reduction  

• The choice of a criterion function 
– Commonly used criterion: classification error 

 
• The determination of the appropriate 

dimensionality 
– Correlated with the intrinsic dimensionality of 

data 
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Dimensionality Reduction 

Feature Extraction 



57/134 Feature Extractor 

( )Tidii xxx ,,, 21  ( )Timii yyy ,,, 21 

Feature 
Extractor 

xi yi 

m ≤ d, usually 
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• Principal Component Analysis (PCA) 
– or Karhunen-Loeve Expansion 

• Project Pursuit 
• Independent Component Analysis (ICA) 
• Factor Analysis 
• Discriminate Analysis 

 
• Kernel PCA 
• Multidimensional Scaling (MDS) 

 
• Feed-Forward Neural Networks 
• Self-Organizing Map 

   Linear Approaches 

   Nonlinear Approaches 

   Neural Networks 
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Dimensionality Reduction 

Feature Selection 



60/134 Feature Selector 

( )Tdxxx ,,, 21  ( )Tmxxx ''2'1 ,,, 

Feature 
Selector 

m ≤ d, usually 

x x′

# possible Selections 







m
d



61/134 The problem 

• Given a set of d features, select a subset of 
size m that leads to the smallest 
classification error. 

 
• No nonexhaustive sequential feature 

selection procedure can be guaranteed to 
produce the optimal subset. 
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• Exhaustive Search 
– Evaluate all possible subsets 
 

• Branch-and-Bound 
– The monotonicity property of the 

criterion function has to be held. 
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• Best Individual Features 
 
• Sequential Forward Selection (SFS) 
• Sequential Backward Selection (SBS) 

 
• “Plus l-take away r” Selection 
• Sequential Forward Floating Search and 

Sequential Backward Floating Search 
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Feature extraction Feature selection 

Feature extraction methods 
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x=








2

1

x
x

height 

weight 

Task: jockey-hoopster recognition. 

The set of hidden state is  

The feature space is  
},{ JH=Y

2ℜ=X

Training examples   )},(,),,{( 11 ll yy xx 

1x

2x

Jy =

Hy =Linear classifier: 





<+⋅
≥+⋅

=
0)(
0)(

)(
bifJ
bifH

d
xw
xw

x

0)( =+⋅ bxw

Example: 1 
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A classifier partitions feature space X into class-labeled regions such that 

||21 YXXXX ∪∪∪=  }0{||21 =∩∩∩ YXXX and 

1X
3X

2X

1X
1X

2X

3X

The classification consists of determining to which region a feature vector x belongs to. 

Borders between decision boundaries are called decision regions. 

Classifier 
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A classifier is typically represented as a set of discriminant functions  
||,,1,:)(f YX =ℜ→ ii x

The classifier assigns a feature vector x to the i-th class if  )(f)(f xx ji > ij ≠∀

)(f1 x

)(f2 x

)(f || xY

maxx y
Feature vector 

Discriminant function 

Class identifier 

Representation of classifier 
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Decision Regions and Functions 

2
21   ],[ ℜ∈= xxxThe feature space is  

0)( 02211 =++= wxwxwd x

Linear decision function : 

Linear classifier: 





<+⋅
≥+⋅

=
0)(
0)(

)(
bifx
bifo

d
xw
xw

x

Pattern Discrimination Revisited 
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• Fish Classification: 
– Sea Bass / Salmon. 
 

• Problem: Sorting incoming fish 
   on a conveyor belt according to  
   species. 

 
 

Salmon 

Sea-bass 

Case Study 

http://upload.wikimedia.org/wikipedia/commons/9/91/Oncorhynchus_keta.jpeg�
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• What can cause problems during 
sensing? 
– Lighting conditions. 
– Position of fish on the conveyor belt. 
– Camera noise. 
– etc… 

• What are the steps in the process? 
1. Capture image. 
2. Isolate fish  
3. Take measurements  
4. Make decision 

 

Case Study (Cont.) 
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Classification 

Feature Extraction 

Pre-processing 

“Sea Bass” “Salmon” 

Case Study (Cont.) 
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• Pre-Processing: 
– Image enhancement  
– Separating touching or occluding fish. 
– Finding the boundary of the fish. 

 
 

Case Study (Cont.) 
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How to separate sea bass from salmon? 

• Possible features to be used: 
– Length 
– Lightness 
– Width 
– Number and shape of fins 
– Position of the mouth  
– Etc … 

 
• Assume a fisherman told us that a “sea bass” is generally 

longer than a “salmon”. 
• Even though “sea bass” is longer than “salmon” on the 

average, there are many examples of fish where this 
observation does not hold. 

 

Case Study (Cont.) 



74/134 

“Good” features “Bad” features 

Feature Selection: Good/Bad 
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• To improve recognition, we might 
have to use more than one feature 
at a time. 
– Single features might not yield the best performance. 
– Combinations of features might yield better performance. 

 
1

2

x
x
 
 
 

1

2

:
:

x lightness
x width

How to separate sea bass from salmon? 

Case Study (Cont.) 
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The length/width is a poor feature alone! 
 
Select the lightness as a possible feature. 

Features and Distributions 
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Decision/classification Boundaries 
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Decision/classification Boundaries 
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• We might add other features that are not correlated 
with the ones we already have. A precaution should 
be taken not to reduce the performance by adding 
such “noisy features” 
 

• Ideally, the best decision boundary should be the 
one which provides an optimal performance such as 
in the following figure (next slide): 

Decision/classification Boundaries 



80/134 

 
 

Decision/classification Boundaries 
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• However, our satisfaction is 
premature because the central aim of 
designing a classifier is to correctly 
classify novel input               
 

 
Issue of generalization! 

Decision/classification Boundaries 
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Decision/classification Boundaries 
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Occam’s Razor 

Entities are not to be multiplied without necessity 
 
     William of Occam 
            (1284-1347) 
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Two Sine Waves Two Sine Waves + Noise Frequency 

 Fourier transform 
 Wavelet transform  

April 16, 2013 84 

Mapping Data to a New Space 
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• Decomposes a signal into different 
frequency subbands 
– Applicable to n-dimensional 

signals 
• Data are transformed to preserve 

relative distance between objects at 
different levels of resolution 

• Allow natural clusters to become 
more distinguishable 

• Used for image compression 

April 16, 2013 85 

What Is Wavelet Transform? 
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• Discrete wavelet transform (DWT) for linear signal processing, multi-
resolution analysis 

• Compressed approximation: store only a small fraction of the 
strongest of the wavelet coefficients 

• Similar to discrete Fourier transform (DFT), but better lossy 
compression, localized in space 

• Method: 
– Length, L, must be an integer power of 2 (padding with 0’s, when 

necessary) 
– Each transform has 2 functions: smoothing, difference 
– Applies to pairs of data, resulting in two set of data of length L/2 
– Applies two functions recursively, until reaches the desired length 

April 16, 2013 86 

What Is Wavelet Transform? 
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• Wavelets: A math tool for space-efficient hierarchical 
decomposition of functions  

• S = [2, 2, 0, 2, 3, 5, 4, 4] can be transformed to S^ = [23/4, -11/4, 
1/2, 0, 0, -1, -1, 0] 

• Compression: many small detail coefficients can be replaced by 
0’s, and only the significant coefficients are retained 

April 16, 2013 87 

What Decomposition 
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• Use hat-shape filters 
– Emphasize region where points cluster 
– Suppress weaker information in their boundaries   

• Effective removal of outliers 
– Insensitive to noise, insensitive to input order 

• Multi-resolution 
– Detect arbitrary shaped clusters at different scales 

• Efficient 
– Complexity O(N) 

April 16, 2013 88 

Why Wavelet Transform? 
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x2 

x1 

e 

Principal Component Analysis (PCA) 

• Find a projection that captures the largest amount of variation in data 
• The original data are projected onto a much smaller space, resulting 

in dimensionality reduction. We find the eigenvectors of the 
covariance matrix, and these eigenvectors define the new space 
 

April 16, 2013 89 
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• Given N data vectors from n-dimensions, find k ≤ n orthogonal vectors 
(principal components) that can be best used to represent data  
– Normalize input data: Each attribute falls within the same range 

– Compute k orthonormal (unit) vectors, i.e., principal components 

– Each input data (vector) is a linear combination of the k principal 
component vectors 

– The principal components are sorted in order of decreasing “significance” 
or strength 

– Since the components are sorted, the size of the data can be reduced by 
eliminating the weak components, i.e., those with low variance (i.e., using 
the strongest principal components, it is possible to reconstruct a good 
approximation of the original data) 

• Works for numeric data only 

Principal Component Analysis (Steps) 

April 16, 2013 90 
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• Another way to reduce dimensionality of data 
• Redundant attributes  

– Duplicate much or all of the information contained in one or more 
other attributes 

– E.g., purchase price of a product and the amount of sales tax paid 

• Irrelevant attributes 
– Contain no information that is useful for the data mining task at 

hand 
– E.g., students' ID is often irrelevant to the task of predicting 

students' GPA 

April 16, 2013 91 
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• Techniques: 
– Brute-force approch: 

• Try all possible feature subsets as input to data mining algorithm 
– Embedded approaches: 

• Feature selection occurs naturally as part of the data mining algorithm 
– Filter approaches: 

•  Features are selected before data mining algorithm is run 
– Wrapper approaches: 

• Use the data mining algorithm as a black box to find best subset of 
attributes 

 

Feature Subset Selection 
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Example:  
Classification and 

Clustering 
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Validation of models 
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Semisupervised and Co-Training 
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Multiple Classification Systems 
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Granular Computing 



98/134 

GrC practical 
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Measurement  →  Feature →  Decision  
  Space                   Space          Space 
 
– Uncertainties arise from deficiencies of information 

available from a situation 
 
– Deficiencies may result from incomplete, imprecise, ill-

defined, not fully reliable, vague, contradictory 
information in various stages of a PRS 

 
Pattern Recognition System (PRS) 
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